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Intuition

o Often our posterior approximation is not enough
- Imagine data generated by two modes

— approximating with a standard Gaussian would be problematic

o If we applying a transformation to a simple density input
> e.g., a Gaussian

> We can morph it into a more complicated density function

o Doing it many times — model any complex density
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Change of variables

o For 1-d variables we know that
| Fla@)g'@adx = [ faudu, where u = g(x

> This is called change of variables (or integration by substitution)
> The density is du = g’ (x)dx

o For multivariate cases

[ £lg0)

det—

dx = j f(uw)du,where u = g(x)

And u and x have the same dimensionality
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https://en.wikipedia.org/wiki/Integration_by_substitution

Normalizing flows

o Our model is an encoder f: x — z
o It maps the input x with density p(x) to the latent z with density p(2)

o The inverse model is the decoder f~1:z - x
> It maps the latent z back to the input x

o For our forward model we have

p(2) |det 2| = p(x) & logp(2) + Iog ~ logp(x)

df
det (E)

Rezende and Mohamed, Variational Inference with Normalizing Flows
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Normalizing flows geometrically

o The determinant shows the change in the p(y)

volume of the input and output probability Tiny slice dy
spaces

o 1-d case

= p(x)

9
p(y)dy = p(x)dx = p(y) ‘%
dy

i indicates how much I must rescale a

similarly tiny slice in y so the two densities
are the same

> The volumes (sizes) rescale so that | p(z) =
1 and f p(X) =1 Tiny slice dx

o

oo The volume in y (p(y)dy) must be
o Normalizing flows expand or contract the scaled by a factor of 2 (|2] = 2) to

density match the same volume in x (p(x)dx)
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Stacking normalizing flows

o The change of variables can be applied recursively

x=1zx=fgloof;ofi(zy)

(e.g.,21 = fi ' (zp) © 2 = fi1(21))

o The log density of our data is

d
logp(x) = log px (zx) = logp, (zo) — Z log det ( fk)

dxk

o Optimize with maximum likelihood
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Stacking normalizing flows
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What transformations?

K
df
logpk(zk) =logpg (2zg) — z log det (E)
k=1

o We want smooth, differentiable transformations f;

> For which it with easy to compute inverse f;*

4k

> and determinant of the Jacobian det a7,

o Example transformations
> Planar flows

- Radial flows
> Coupling layers
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Planar flow

o The transformation is
f(z) =z+uh(wfz+b)
°u,w, b are free parameters
° h is an element-wise non-linearity (element-wise so that it is easy to invert)
> The log-determinant of the Jacobian is
Y(z) =h'(Wwlz+b)w

d
det (d_];> =1+ uly(2)|
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Radial flow

o The transformation is
f(z) =z+ ph(a,7)(z — zy)
Where h(a,r) = 1/(a + 1)

o The log-determinant of the Jacobian is

det <Z—£) =[1 + Bh(e,)]* 1 + Bh(a, 1) + h'(a,1)r]
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VAE with Normalizing Flows
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Figure 2. Inference and generative models. Left: Inference net-
work maps the observations to the parameters of the flow; Right:
generative model which receives the posterior samples from the
inference network during training time. Round containers repre-
sent layers of stochastic variables whereas square containers rep-
resent deterministic layers.
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Learning better posteriors with variational inference

o Again: the evidence lower bound is
ELBOg,¢ (%) = logp(x) — KL(q, (z]|x)||p(2|x))

o Replace the simple approximate posterior by normalizing flows

Eqq(zo1x) 108 Po (X210 )| — KL(qo(201X) I| p(2)) + Eg (2, |x) Z log ‘detg—’;’;

Algorithm 1 Variational Inf. with Normalizing Flows

Parameters: ¢ variational, 8 generative
while not converged do
x < {Get mini-batch}
Zo ~ qo(®|x)
zx < fK o fxk_10...0 f1(zo)
F(x) = F(x,2x)
A x —VpF(x)
Aq.') X —V¢f(x)
end while

Rezende and Mohamed, Variational Inference with Normalizing Flows
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The effect of number of transformations/flows

Planar . Radial
K=2 =2

Unit Gaussian

Uniform

Rezende and Mohamed, Variational Inference with Normalizing Flows
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Some results

(c) NICE

Rezende and Mohamed, Variational Inference with Normalizing Flows
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